Kiel,

Rogers, K.; et al. (2019): Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise

Rogers, K.; Kelleway, J.; Saintilan, N.; Megonigal, P.; Adams, J.; Holmquist, J. et al. (2019): Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. In: Nature 567 (7746), S. 91–95. DOI: 10.1038/s41586-019-0951-7.

"Coastal wetlands (mangrove, tidal marsh and seagrass) sustain the highest rates of carbon sequestration per unit area of all natural systems, primarily because of their comparatively high productivity and preservation of organic carbon within sedimentary substrates. [...] Our results suggest that coastal wetlands characteristic of tectonically stable coastlines have lower carbon storage owing to a lack of accommodation space and that carbon sequestration increases according to the vertical and lateral accommodation space created by RSLR. Such wetlands will provide long-term mitigating feedback effects that are relevant to global climate–carbon modelling."

LINK

« Go back

0 Comments

Add a comment

You need to be logged in to add comments.